
Fusion-powered EDSLs
Philippa Cowderoy

flippa@flippac.org

Fusion-powered EDSLs – p.



Outline

• What is fusion?
• Anatomy of an EDSL
• Shallow vs deep embedding
• Examples: Identity & State monads
• Self-analysing EDSL implementations
• Summary, Wishlist, Questions

Fusion-powered EDSLs – p.



What is Fusion?

Given:
• A "producer"
• A "consumer"

We can often rewrite the expression consumer

producer so that there is no intermediate value.
e.g. map f (map g xs) → map (f.g) xs

Result of producer must only used by
consumer:
Otherwise we still need the intermediate!

Fusion-powered EDSLs – p.



Anatomy of an EDSL

• Language primitives:
char, >>=, catch, atomic

• Non-primitive combinators and helpers:
many, mapM , chainl1

• Execution functions:
runParser, runError, runToTheShops

• Analyses:
Error-checking, grammar analyses, possible
optimisations...

Fusion-powered EDSLs – p.



Anatomy of an EDSL

Syntax
↓

Constructors: producers, form an algebra
>>=, catch, mapM , chainl1

↓

Internal Representation
↓

Deconstructors: consumers, form a coalgebra
runParser, runError

↓

Semantics

Fusion-powered EDSLs – p.



Shallow Embedding

type Parser a = String -> [(a,String)]

char :: Char -> Parser Char

char c (c’:s) | c == c’ = [(c,s)]

char _ _ = []

...

runParser :: Parser a -> String ->

[(a,String)]

runParser = ($)

Fusion-powered EDSLs – p.



Deep Embedding

data Parser a where

...

Char :: Char -> Parser Char

runParser :: Parser a -> String ->

[(a,String)]

...

runParser (Char c) (c’:s)

| c == c’ = [(c,s)]

runParser (Char c) _ = []

Fusion-powered EDSLs – p.



Shallow vs Deep Embedding

Deep Shallow

Structure Intermediate No intermediate

Primitive Denote syntax Denote semantics

Constructors Hard to add? Easily added?

Primitive syntax → semantics Trivial

Deconstructors easily added hard to add

Fusion-powered EDSLs – p.



A Trivial Fusion Example

data Id a where

Return :: a -> Id a

Bind :: Id a -> (a -> Id b) -> Id b

runIdentity :: Id a -> a

runIdentity (Return v) = v

runIdentity (Bind l fr) =

let l’ = runIdentity l

r = fr l’

in runIdentity r

Fusion-powered EDSLs – p.



A Trivially Transformed Example

Change types:
newtype Id a = {runIdentity::a}

Rewrite the implementation according to:

(return, bind) = runIdentity(Return, Bind)

Result:

return v = Id v

bind l fr = Id f where

f = let l’ = runIdentity l

r = fr l’

in runIdentity r

Fusion-powered EDSLs – p. 10



State Monad

data State s a where ...

Bind :: State s r ->

(r -> State s a) ->

State s a

Get :: State s s

runState :: State s a -> s -> (s,a)

runState (Bind c1 f) s0 =

let (s1,r1) = runState c1 s0

c2 = f r1

in runState c2 s1

runState Get s = (s,s)

Fusion-powered EDSLs – p. 11



Stating the Obvious?

data State s a =

State {runState :: s -> (s,a)}

bind c1 f = State c where

c s0 = let (s1,r1) = runState c1 s0

c2 = f r1

in runState c2 s1

get = State c where

c s = (s,s)

Note:

runState :: State s a -> s -> (s,a)

=> State s a = State {runState :: s -> (s,a)}

Fusion-powered EDSLs – p. 12



DSLs that Think Too Much

What if we want to do self-analysis like those
shiny parsing combinators? Isn’t that hard?

Not really!

Fusion-powered EDSLs – p. 13



Parsing

data Parser r where

Char :: Char -> Parser Char

Ap :: Parser a -> Parser (a -> r) -> Parser r

Pure :: r -> Parser r

Choice :: Parser r -> Parser r -> Parser r

Empty :: Parser r

Many :: Parser r -> Parser [r]

A simple Applicative parser. Grammar is context-free - never

determined by intermediate results - so we can analyse it.

Fusion-powered EDSLs – p. 14



Mere semantics?

Here are the semantic functions:

runParser :: Parser a -> String ->

Maybe (a, String)

firsts :: Parser a -> Map Char (Parser a)

runParser calls firsts, using a first set analysis to speed itself up.

Moving to a shallow embedding, we need to carry two values in

the record:

newtype Parser a =

Parser {runParser :: String -> Maybe a,

firsts :: Map Char (Parser a)

Fusion-powered EDSLs – p. 15



Results

• Memoisation of static results for free!

• Still room for further efficiency gains - e.g. swapping
Maybe for a more efficient error monad, attacking the
usual memory leak problem

• There’s plenty of room for small optimisations, but
many of them can be made to the original version of
the code too or left to well-known GHC optimisations.

• Control.Applicative.many (like many other functions
that use general recursion) messes up the static
analysis whether in deep or shallow form :-(

Fusion-powered EDSLs – p. 16



Summary

To translate from deep to shallow:
• Replace the term datatype with a record type

- a field for each semantic function
• Replace the term constructors with records -

the fields containing the constructor’s case
from each semantic function

• Don’t worry about sharing/exploiting laziness
in the deep version, the shallow one will do it
automatically!

Fusion-powered EDSLs – p. 17



Wishlist

• Better support for object-level recursion - this
probably means sugar

• Why am I fusing all this stuff by hand
anyway? I know all the conditions required to
make it work!

• Pointed syntactic sugar for Applicatives would
be nice

• Something for my parser’s toothache?

Fusion-powered EDSLs – p. 18



Finish

Both the slides from this talk and a lengthier
parsing example will be available on the web
from http://flippac.org/talks/ and linked to from
the AngloHaskell 2008 page.

Any questions?

Fusion-powered EDSLs – p. 19


	Outline
	What is Fusion?
	Anatomy of an EDSL
	Anatomy of an EDSL
	Shallow Embedding
	Deep Embedding
	Shallow vs Deep Embedding
	A Trivial Fusion Example
	A Trivially Transformed Example
	State Monad
	Stating the Obvious?
	DSLs that Think Too Much
	Parsing
	Mere semantics?
	Results
	Summary
	Wishlist
	Finish

