
Visibly Powerful Parsing
Philippa Cowderoy

flippa@flippac.org

Visibly Powerful Parsing – p. 1/18

Outline

• Regular Languages, Applicatives and Visibly
Pushdown Languages

• Transformations

• Layout

• State Hacks

• Incremental Parsing

• Beyond Parsing

• Summary, Questions

Visibly Powerful Parsing – p. 2/18

Regular Languages

Regular languages are defineable using regular
expressions:

e ::= A, B, C Terminals / tokens

| e.e Sequencing

| e | e Choice

| e∗ Iteration

Visibly Powerful Parsing – p. 3/18

Context-Free Languages

Context-Free Languages are defineable using EBNF.
EBNF is essentially a recursive let block around regular
expressions:

l ::= let nt0 = e0 Non-terminal bindings

nt1 = e1

...

in e Starting production

e ::= ... Per regular expressions

| nt Non-terminals

Visibly Powerful Parsing – p. 4/18

Applicatives and Kleene Algebras

Applicative parsers in Haskell correspond to CFLs - we
turn a finite recursive specification into an infinite grammar.

Finite applicative parsers correspond to regular languages.
In fact, they almost form a kleene algebra, with pure as
the empty word and <* > as .

Exception:
pure Var < * > identifier

6= identifier

6= identifier < * > pure Var

Visibly Powerful Parsing – p. 5/18

Visibly Pushdown Languages

Visibly Pushdown Languages are defineable with a variant
of EBNF – all recursion is bracketed.

l ::= let nt0 = e0 Non-terminal bindings

nt1 = e1

...

in e Starting production

e ::= ... Per regular expressions

| O nt C Bracketed non-terminals

O, C and A,B,C are disjoint sets of tokens

Visibly Powerful Parsing – p. 6/18

Applicative VP Parsers

Take a finite applicative parser, add a ‘bracket ’ operation
for recursion and we can parse VPLs. For a finite
representation use a tagging monad around the applicative
like so:

do rec digit <- tag $ foldr1 (<|>)

(map token [’0’..’9’])

number <- tag $ Val . read <$> some digit

fac <- tag $ number

<|> bracket lparen rparen expr

expr <- tag $ fac ‘chainl1‘

(token ’+’ * > pure Add)

return expr

Visibly Powerful Parsing – p. 7/18

Pretty-printed Applicative

#0 = ’0’ <|> ’1’ <|> ’2’ <|> ’3’ <|> ’4’

<|> ’5’ <|> ’6’ <|> ’7’ <|> ’8’ <|> ’9’

#1 = <PURE0> <* > (<PURE1> <* > #0)

<* > Many #0

#2 = #1 <|> ’(’ #3 ’)’

#3 = (<PURE2> <* > #2) < * >

Many ((<PURE3> < * > (<PURE4> <* > ’+’)

<* > <PURE5>)

<* > #2)

In #3

Visibly Powerful Parsing – p. 8/18

Transformations and Analysis

Lots of operations on VPLs are closed!
Union, intersection, difference, negation...

If you can do it to a regex, you can lift it to VPLs with a bit
of book-keeping. Locally, VPLs are regexes – and
bracketing syncs recursion.

Visibly Pushdown Automata can thus be determinised.

(see Alur & Madhusudan, Visibly Pushdown Languages (2005))

Visibly Powerful Parsing – p. 9/18

Backtracking and Non-determinism

You can’t quite determinise the pure aspects of an
applicative VP parser, but consumption can be
determinised.

This means you know exactly where the remaining
non-determinism is, however you choose to handle it.

LL(1), LL(ω), we can figure it out every time and for each
production individually.

No more try, no more commit!

Visibly Powerful Parsing – p. 10/18

Layout

You can do Haskell-style layout for VPLs, or anything you
can erase to them.

No need for a parse-error rule:

Identify tokens that can’t appear in a given production (e.g.
commas)

Use them to start popping the layout stack in emulation of
parse-error

Visibly Powerful Parsing – p. 11/18

State Hacks

Imperative parser generators and monadic parsing
combinators support state during parsing.

Common use cases: Symbol tables, position counting,
context sensitivity hacks

Applicative VPL parsing can do something similar using
operations similar to the ArrowChoice class –
context-sensitive but statically-structured choice.

This follows similar laws to <|> , leaving all our
transformations and analyses intact!

Visibly Powerful Parsing – p. 12/18

Even Bigger Stack Hacks

We don’t have to use full state however, we can use a
Reader-like stack discipline.

Even better, we can use state to work around the Visibly
Pushdown limitation! Using a lexer with state access, we
can decide whether < is <operator or <bracket by checking
whether we’re currently parsing a term or a type.

Visibly Powerful Parsing – p. 13/18

Incremental Parsing

Using insight and technique from Edward Kmett, we can
do incremental parsing for VPLs as well.

The key elements of our grammars are monoidal -
sequencing, choice, contextual choice, parsing results,
state.

We can store the parse tree in a finger tree. We can
resume part way through and thanks to the visibly
pushdown property we also know when we can reuse the
rest of the previous parse – or when they can’t be
compatible due to bracket imbalance.

Visibly Powerful Parsing – p. 14/18

Beyond Parsing

VPLs aren’t just used for parsing - in fact, parsing is a
minority application.

Much research has been put into VPLs for program
analysis and XML processing. Can we combine this with
static typing?

Is there a use for a BracketedApplicative class, and if so
what is its most general form?

Visibly Powerful Parsing – p. 15/18

Exaggerated Claims?

Visibly Pushdown Applicative parsers can express a wide
range of syntax using the state hack and occasionally
staging (Haskell-style operators, anyone?)

They also offer a number of attractive technical
possibilities, ranging from easy efficient implementations to
incremental parsing. They play well with regex-based
technology common in text editors and IDEs.

Visibly Powerful Parsing – p. 16/18

Exaggerated Claims?

All good programming language syntax can be
expressed neatly in terms of Visibly Pushdown

Applicative parsing.

Visibly Powerful Parsing – p. 17/18

Bibliography

• Alur & Madhusudan, Visibly Pushdown Languages (2005)

• http://www.cs.uiuc.edu/˜madhu/vpa/ – the Visibly

Pushdown Languages page

• Hinze & Paterson, Finger Trees: A Simple General-purpose

Data Structure

• Edward Kmett on monoidal parsing,

http://comonad.com/reader/category/parsing/ :

• Slides from Hac Phi: All About Monoids

• Iteratees, Parsec and Monoids (Slides)

Visibly Powerful Parsing – p. 18/18

	Outline
	Regular Languages
	Context-Free Languages
	Applicatives and Kleene Algebras
	Visibly Pushdown Languages
	Applicative VP Parsers
	Pretty-printed Applicative
	Transformations and Analysis
	Backtracking and Non-determinism
	Layout
	State Hacks
	Even Bigger Stack Hacks
	Incremental Parsing
	Beyond Parsing
	Exaggerated Claims?
	Exaggerated Claims?
	Bibliography

