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Regular Languages

Regular languages are defineable using regular
expressions:

e ::= A, B, C Terminals / tokens

| e.e Sequencing

| e | e Choice

| e∗ Iteration
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Context-Free Languages

Context-Free Languages are defineable using EBNF.
EBNF is essentially a recursive let block around regular
expressions:

l ::= let nt0 = e0 Non-terminal bindings

nt1 = e1

...

in e Starting production

e ::= ... Per regular expressions

| nt Non-terminals
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Applicatives and Kleene Algebras

Applicative parsers in Haskell correspond to CFLs - we
turn a finite recursive specification into an infinite grammar.

Finite applicative parsers correspond to regular languages.
In fact, they almost form a kleene algebra, with pure as
the empty word and <* > as .

Exception:
pure Var < * > identifier

6= identifier

6= identifier < * > pure Var
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Visibly Pushdown Languages

Visibly Pushdown Languages are defineable with a variant
of EBNF – all recursion is bracketed.

l ::= let nt0 = e0 Non-terminal bindings

nt1 = e1

...

in e Starting production

e ::= ... Per regular expressions

| O nt C Bracketed non-terminals

O, C and A,B,C are disjoint sets of tokens
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Applicative VP Parsers

Take a finite applicative parser, add a ‘bracket ’ operation
for recursion and we can parse VPLs. For a finite
representation use a tagging monad around the applicative
like so:

do rec digit <- tag $ foldr1 (<|>)

(map token [’0’..’9’])

number <- tag $ Val . read <$> some digit

fac <- tag $ number

<|> bracket lparen rparen expr

expr <- tag $ fac ‘chainl1‘

(token ’+’ * > pure Add)

return expr
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Pretty-printed Applicative

#0 = ’0’ <|> ’1’ <|> ’2’ <|> ’3’ <|> ’4’

<|> ’5’ <|> ’6’ <|> ’7’ <|> ’8’ <|> ’9’

#1 = <PURE0> <* > (<PURE1> <* > #0)

<* > Many #0

#2 = #1 <|> ’(’ #3 ’)’

#3 = (<PURE2> <* > #2) < * >

Many ((<PURE3> < * > (<PURE4> <* > ’+’)

<* > <PURE5>)

<* > #2)

In #3
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Transformations and Analysis

Lots of operations on VPLs are closed!
Union, intersection, difference, negation...

If you can do it to a regex, you can lift it to VPLs with a bit
of book-keeping. Locally, VPLs are regexes – and
bracketing syncs recursion.

Visibly Pushdown Automata can thus be determinised.

(see Alur & Madhusudan, Visibly Pushdown Languages (2005))
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Backtracking and Non-determinism

You can’t quite determinise the pure aspects of an
applicative VP parser, but consumption can be
determinised.

This means you know exactly where the remaining
non-determinism is, however you choose to handle it.

LL(1), LL(ω), we can figure it out every time and for each
production individually.

No more try, no more commit!
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Layout

You can do Haskell-style layout for VPLs, or anything you
can erase to them.

No need for a parse-error rule:

Identify tokens that can’t appear in a given production (e.g.
commas)

Use them to start popping the layout stack in emulation of
parse-error
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State Hacks

Imperative parser generators and monadic parsing
combinators support state during parsing.

Common use cases: Symbol tables, position counting,
context sensitivity hacks

Applicative VPL parsing can do something similar using
operations similar to the ArrowChoice class –
context-sensitive but statically-structured choice.

This follows similar laws to <|> , leaving all our
transformations and analyses intact!
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Even Bigger Stack Hacks

We don’t have to use full state however, we can use a
Reader-like stack discipline.

Even better, we can use state to work around the Visibly
Pushdown limitation! Using a lexer with state access, we
can decide whether < is <operator or <bracket by checking
whether we’re currently parsing a term or a type.
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Incremental Parsing

Using insight and technique from Edward Kmett, we can
do incremental parsing for VPLs as well.

The key elements of our grammars are monoidal -
sequencing, choice, contextual choice, parsing results,
state.

We can store the parse tree in a finger tree. We can
resume part way through and thanks to the visibly
pushdown property we also know when we can reuse the
rest of the previous parse – or when they can’t be
compatible due to bracket imbalance.
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Beyond Parsing

VPLs aren’t just used for parsing - in fact, parsing is a
minority application.

Much research has been put into VPLs for program
analysis and XML processing. Can we combine this with
static typing?

Is there a use for a BracketedApplicative class, and if so
what is its most general form?
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Exaggerated Claims?

Visibly Pushdown Applicative parsers can express a wide
range of syntax using the state hack and occasionally
staging (Haskell-style operators, anyone?)

They also offer a number of attractive technical
possibilities, ranging from easy efficient implementations to
incremental parsing. They play well with regex-based
technology common in text editors and IDEs.
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Exaggerated Claims?

All good programming language syntax can be
expressed neatly in terms of Visibly Pushdown

Applicative parsing.

Visibly Powerful Parsing – p. 17/18



Bibliography

• Alur & Madhusudan, Visibly Pushdown Languages (2005)

• http://www.cs.uiuc.edu/˜madhu/vpa/ – the Visibly

Pushdown Languages page

• Hinze & Paterson, Finger Trees: A Simple General-purpose

Data Structure

• Edward Kmett on monoidal parsing,

http://comonad.com/reader/category/parsing/ :

• Slides from Hac Phi: All About Monoids

• Iteratees, Parsec and Monoids (Slides)

Visibly Powerful Parsing – p. 18/18


	Outline
	Regular Languages
	Context-Free Languages
	Applicatives and Kleene Algebras
	Visibly Pushdown Languages
	Applicative VP Parsers
	Pretty-printed Applicative
	Transformations and Analysis
	Backtracking and Non-determinism
	Layout
	State Hacks
	Even Bigger Stack Hacks
	Incremental Parsing
	Beyond Parsing
	Exaggerated Claims?
	Exaggerated Claims?
	Bibliography

