
Telescopic Constraint Trees

Philippa Cowderoy

Idris Developers Meeting 2021

email: flippa@flippac.org
twitter: @flippac

Philippa Cowderoy TCTs Idris Developers Meeting 2021 1 / 40

Overview

What is a Telescopic Constraint Tree? (aka TCT)

Example: Rules for Building TCTs for STLC

Generalisation with TCTs

TCTs for Substructural Systems and QTT

Odds and Ends

Philippa Cowderoy TCTs Idris Developers Meeting 2021 2 / 40

What is a TCT? – Big Picture

A complete representation of a typechecking problem

Maybe in progress or even finished

A scope-aware constraint store

A way to talk about checker behaviour

A way to implement a checker

Philippa Cowderoy TCTs Idris Developers Meeting 2021 3 / 40

What is a TCT? – Not For Today

A recurring idea I put a name to

Derivable from ‘Information Aware’ typing rules

A tool for type-level debugging?

An operating system?. . .

Philippa Cowderoy TCTs Idris Developers Meeting 2021 4 / 40

De Bruijn Telescopes – Composing Contexts

What is a telescope?

A telescope looks a lot like a context:
{x :τ1, y :τ2}

Telescopes can be composed:
{x :τ1, y :τ2} ◦ {x :τ3, z :τ4} = {x :τ1, y :τ2, x :τ3, z :τ4}

But I’ll compose with commas like so:
{x :τ1, y :τ2}, {x :τ3, z :τ4}

Philippa Cowderoy TCTs Idris Developers Meeting 2021 5 / 40

De Bruijn Telescopes – Tracing AST Paths

As we trace a path through a term, we accumulate more context

We can see this as composing telescopes, one per AST node

Context ≈ sequence of telescopes

Philippa Cowderoy TCTs Idris Developers Meeting 2021 6 / 40

Telescopic Trees

We have a tree, the AST

We can already trace paths through it. . .

. . . But we could build a second tree and cover all paths!

A Telescopic Tree

Philippa Cowderoy TCTs Idris Developers Meeting 2021 7 / 40

A Telescopic Tree

Example term: (λx . x) “Hello,World!′′

{}, Initial context
{} Application
|{}, λx .

{x : String} x
|{} “Hello,World!′′

Philippa Cowderoy TCTs Idris Developers Meeting 2021 8 / 40

A More Compact Telescopic Tree

{}, Initial context
{} Application
|{}, λx .

{x : String} x
|{} “Hello,World!′′

(Overly?) compact version:
{}, {} |{}, {x : String}

|{}

Philippa Cowderoy TCTs Idris Developers Meeting 2021 9 / 40

So Far So Cute?

Simple enough so far – take existing idea, add branches

Not informative enough

Given
{}, {} |{}, {x : String}

|{} ,

where does String even come from?. . .

No problem declared, no computational content!

Philippa Cowderoy TCTs Idris Developers Meeting 2021 10 / 40

Telescopic Constraint Trees

We want to talk about how context and connectives interact

Contents of typing rules reflected in tree!

We want to see the types of subterms

Perhaps not emphasised as such, but definitely present

Constraint solving problems can do all this!

Philippa Cowderoy TCTs Idris Developers Meeting 2021 11 / 40

Telescopic Constraints

∃τ Metavariable binding
∃τ=τ Known metavariable binding

τ = τ Type equality

?x : τ Query (object) variable bindings

= covers simple metavariable assignments and unification

?x : τ is situated in the TCT – it must respect scope

Philippa Cowderoy TCTs Idris Developers Meeting 2021 12 / 40

An Example TCT

Example term: (λx . x) “Hello,World!′′

{}, Initial context
{∃τq}, Query variable

{∃τ f , ∃τp, τp → τq = τ f }, Application
|{∃τp′, ∃τ r , τ f = τp′ → τ r}, λx .

{x : τp′, ?x : τ r} x
|{τp = String} “Hello,World!′′

Philippa Cowderoy TCTs Idris Developers Meeting 2021 13 / 40

An Example TCT – Some Solving

Solve the constraint ?x : τ r and propagate:

{}, Initial context
{∃τq}, Query variable

{∃τ f , ∃τp, τp → τq = τ f }, Application
|{∃τp′, ∃τ r=τp′, τ f = τp′ → τp′}, λx .

{x : τp′} x
|{τp = String} “Hello,World!′′

Philippa Cowderoy TCTs Idris Developers Meeting 2021 14 / 40

An Example TCT – More Solving

Eliminate τ r (no remaining occurrences due to propagation)
Solve τ f = τp′ → τp′ and propagate:

{}, Initial context
{∃τq}, Query variable

{∃τp′, ∃τ f =τp′ → τp′, ∃τp, . . . Application
. . . τp → τq = τp′ → τp′},
|{}, λx .

{x : τp′} x
|{τp = String} “Hello,World!′′

Philippa Cowderoy TCTs Idris Developers Meeting 2021 15 / 40

An Example TCT – Yet More Solving

Eliminate τ f
Solve τp = String and propagate:

{}, Initial context
{∃τq}, Query variable

{∃τp′, ∃τp=String, . . . Application
. . . String→ τq = τp′ → τp′},
|{}, λx .
{x : τp′} x

|{} “Hello,World!′′

Philippa Cowderoy TCTs Idris Developers Meeting 2021 16 / 40

An Example TCT – Solving = Slowly (1)

Eliminate τp
Simplify String→ τq = τp′ → τp′ one step:

{}, Initial context
{∃τq}, Query variable

{∃τp′, String = τp′, τq = τp′}, Application
|{}, λx .
{x : τp′} x

|{} “Hello,World!′′

Philippa Cowderoy TCTs Idris Developers Meeting 2021 17 / 40

An Example TCT – Solving = Slowly (2)

Solve String = τp′ and τq = τp′, propagate:
τp′ can now be eliminated – and we have solved for τq!

{}, Initial context
{∃τp′=String,∃τq=String}, Query variable

{}, Application
|{}, λx .
{x : String} x

|{} “Hello,World!′′

Philippa Cowderoy TCTs Idris Developers Meeting 2021 18 / 40

An Example TCT – Supsiciously Familiar Solution!

{}, Initial context
{∃τq=String}, Query variable

{}, Application
|{}, λx .
{x : String} x

|{} “Hello,World!′′

{}, {∃τq=String} |{}, {x : String}
|{}

Philippa Cowderoy TCTs Idris Developers Meeting 2021 19 / 40

A Note on Showing Working

At each step we eliminated bindings and solved constraints.

This is much easier for us to follow, but destroys any audit trail!

Alternatives:

Mark constraints solved

Mark metavariables unused

Mark solved metavariables with the constraint that found them

Mark generated constraints with their parent constraint

Philippa Cowderoy TCTs Idris Developers Meeting 2021 20 / 40

What Does a Telescopic Constraint Tree Do?

What an ordinary typechecker does in time

Telescopic constraint trees do in space

Philippa Cowderoy TCTs Idris Developers Meeting 2021 21 / 40

Building TCTs

Next up:

Rules for building TCTs like the example

Based on an ‘Information Aware’ presentation of STLC

Constraint-based presentation
One ‘unusual’ constraint
Structural laws reified as context constraints

Philippa Cowderoy TCTs Idris Developers Meeting 2021 22 / 40

Constraints for the Simply Typed Lambda Calculus

τ = τ Type equality
x : τ ∈ Γ Binding in context

Γ := Γ ; x : τ Context extension

Γ−〈ΓΓ, Γ−〈{Γ} Context duplication

Context constraints are ‘opinionated’ but normal enough

Duplication (possibly also ‘merge’ or even ‘split’) is unusual

Philippa Cowderoy TCTs Idris Developers Meeting 2021 23 / 40

One Extra Quirk for TCTs

We could skip this at this point, but. . .

TCTs could use another context constraint!

‘Information Aware’ TCT Description

x : τ ∈ Γ ?x : τ Query/Ask for binding [here]
Γ′ := Γ ; x : τ !x : τ Generate/Tell about binding [here]

We’ll exploit this later

Philippa Cowderoy TCTs Idris Developers Meeting 2021 24 / 40

Building Trees

We build a TCT by traversing the AST

A ‘TCT semantics’: JT K τ
Translate T into a TCT

Have τ become the result type

Retaining all information from the typing rules!

Philippa Cowderoy TCTs Idris Developers Meeting 2021 25 / 40

Starting the Build

Suppose we want to synthesise a type:
Γ+ ` T+ : τ−

We use this rule to build the corresponding tree:

Γ+, {∃τ−}, JT+K τ+ (Start)

τ acts as a query variable

Philippa Cowderoy TCTs Idris Developers Meeting 2021 26 / 40

Building Var

This typing rule:
x : τ ∈ Γ

Γ ` x : τ Var

Becomes this TCT rule:

Jx+K τ− = {?x− : τ+} (Var)

Philippa Cowderoy TCTs Idris Developers Meeting 2021 27 / 40

Building Lam

Γf := Γ ; x : τp+

Γf ` T : τ r+

τ f = τp− → τ r−

Γ ` λx .T : τ f Lam

Jλx .T K τ f =
{∃τp, ∃τ r , τ f = τp− → τ r−, !x : τp+}, JT K τ r+ (Lam)

Philippa Cowderoy TCTs Idris Developers Meeting 2021 28 / 40

Building App

Γ−〈{Γf , Γp}
Γf ` Tf : τ f Γp ` Tp : τp

τp → τ r = τ f

Γ ` Tf Tp : τ r App

JTf TpK τ r =
{∃τ f , ∃τp, τp → τ r = τ f } | JTf K τ f

| JTpK τp (App)

Philippa Cowderoy TCTs Idris Developers Meeting 2021 29 / 40

Deriving TCT Rules

The rules for TCTs are mechanically derived!

This gives us (informal) completeness of TCTs

Complete regarding type system rules
Anything a checker (justifiably) does, TCTs can do
TCTs can be used to discuss all possible checkers!

More ‘operational’ details with no abstraction lost

Philippa Cowderoy TCTs Idris Developers Meeting 2021 30 / 40

‘Advanced’ Topics

We’ve already covered:

How TCTs work

How to build them for a specific system

How generic TCTs are

Now for:

Generalisation

Constraining when constraints are solved

TCTs for substructural systems and QTT

Philippa Cowderoy TCTs Idris Developers Meeting 2021 31 / 40

Generalisation Is Hard?

Generalisation rules are normally written in terms of the context
where generalisation happens:

Γ ` e : σ α /∈ free(Γ)

Γ ` e : ∀α.σ
Gen

This is confusing (and ultimately error-prone). . .

. . . because we really want to generalise over unconstrained variables

After all local constraints have been solved!

Philippa Cowderoy TCTs Idris Developers Meeting 2021 32 / 40

Generalisation ‘In Context’ Is Easy!

We try to could use a constraint like σ = GenΓ(τ), but that hurts

From ‘Type Inference In Context’ by Gundry, McBride and McKinna:

Two constraints – <Gen> and </Gen (τ ≥ τ)>

A matched pair delimiting unbound metavariables

<Gen> prevents making metavariables too global without cause

</Gen (τ ≥ τ)> fires when it has no unsolved local constraints

<Gen> can then remove itself

Philippa Cowderoy TCTs Idris Developers Meeting 2021 33 / 40

Generalisation ‘In Context’ Example

Example in Hindley-Milner: let id = λx .x in id “Hello,World!′′

{}, {∃τq}{∃σ} Setup&let
|{<Gen>, ∃τb, </Gen (σ ≥ τb)>}, let (LHS)
{∃τp, ∃τ r , !x : ∀.τp, τb = τp → τ r}, lambda
{∃σr , ?x : σr , σr≥τ r} x

|{!id : σ}, let (RHS)
{∃τ f , ∃τp, τp → τq = τ f } app
|{∃σf , ?id : σf , σf≥τ f } id
|{τp = String} ”Hello,World!”

Philippa Cowderoy TCTs Idris Developers Meeting 2021 34 / 40

Generalisation ‘In Context’ – Historical Notes

Originally ; instead of <Gen> – the HTML-like notation is my fault

; can be seen as ‘residue’ from dissecting an abstract machine

It marks where the machine went down the LHS of a let

TCTs as a strategy are old! I just figured out how to derive them

Philippa Cowderoy TCTs Idris Developers Meeting 2021 35 / 40

Generalisation ‘In Context’ – Technical Notes

I normally write typing rules with ‘linear’ variables

Duplication constraints and TCT branches mark separation

As in separation logic!

Generalisation delimits ‘regions’ (think Tofte-Talpin)

As much sequencing of constraint solving as we need, no more

Philippa Cowderoy TCTs Idris Developers Meeting 2021 36 / 40

‘Duplication’ for Substructural Systems

What satisfies Γ−〈{Γl , Γr}?

When Γ
struct

= Γl , Γr

This works for any combination of the usual structural rules

Philippa Cowderoy TCTs Idris Developers Meeting 2021 37 / 40

‘Duplication’ for Linear Systems – Two Fragments

‘Additive’ Duplication ‘Multiplicative’ Duplication

Γ−|〈ΓlΓr or Γ−|〈{Γ} −×〈ΓlΓr or −×〈{Γ}

Split Γ between Γl and Γr Duplicate Γ into Γl and Γr

Γ
struct

= Γl , Γr Γ = Γl = Γr

In systems with all the structural laws, these coincide

Philippa Cowderoy TCTs Idris Developers Meeting 2021 38 / 40

QTT Duplication

How could I copy 0 times into one context and 1 into another?

Perhaps:

Γ−×〈0 Γtype
1 Γterm or Γ−×〈{0 · Γtype, 1 · Γterm}

Multiply Γtype’s contents by 0
Multiply Γterm’s contents by 1
(using the resource rig’s multiplication!)

Philippa Cowderoy TCTs Idris Developers Meeting 2021 39 / 40

Wild Speculation! Also previous material. . .

Interactive editing based on TCTs?

‘Information Awareness’ is about information flow and preservation

Could we have reversible TCT-based elaboration etc?

MSFP2020 Extended Abstract:
https://msfp-workshop.github.io/msfp2020/cowderoy.pdf

MSFP2020 Slides:
https://msfp-workshop.github.io/msfp2020/slides/cowderoy.pdf

MSFP2020 Talk – https://www.youtube.com/watch?v=JzfdjMgEKzs
Philippa Cowderoy TCTs Idris Developers Meeting 2021 40 / 40

https://msfp-workshop.github.io/msfp2020/cowderoy.pdf
https://msfp-workshop.github.io/msfp2020/slides/cowderoy.pdf
https://www.youtube.com/watch?v=JzfdjMgEKzs

